ࡱ> XZWa ,(bjbj <#&A%A%&&<##f$f$<,,,&v#f$#f$<,&<,,+:;f$f~':<=04=;A'JA4;A#;A%0q%",%%A%A%A%<< *A%A%A%4=&&&&AA%A%A%A%A%A%A%A%A%B X": GROSSMONT COLLEGE Official Course Outline GEOGRAPHY 120 PHYSICAL GEOGRAPHY: EARTH SYSTEMS Course Number Course Title Semester Units Semester Hours GEOG 120 Physical Geography: 3 3 hours lecture: 48-54 hours Earth Systems 96-108 outside-of-class hours Prerequisites 144-162 total hours None. Corequisite None. Recommended Preparation None. Catalog Description Explore your world! Drought! Fire! Earthquakes! Flood! This physical science course describes and explains the earths major physical systems, the basic energy and material flows by which these systems operate, and the result of human interaction with these flows. Phenomena explored include storms, climate, ecosystems, seasonal change, plate tectonics, stream and glacial activity, and beach systems. Course Objectives The successful student will: Analyze the major physical components of the Earth System in an organized, hierarchial manner. Compare and contrast the interactions between Earths various physical subsystems at various spatial and temporal scales. Assess the basic energy and material flows by which these systems operate in the context of systems theory. Appraise the underlying principles which govern both these flows and the configurations they produce (e.g., mass and energy laws). Compare the prevailing scientific models that systematically explain and predict Earth behavior (e.g., wave cyclone theory, plate tectonic theory, kinetic theory, atmospheric dynamics and thermodynamics, Earth-Sun relationships, etc.). Examine the resultant spatial distributions of climate, water, soil, biota, tectonics, and gradation as found across the Earths surface. Analyze the nature of the scientific pursuit, especially the ways in which scientists collect data, develop explanations and then evaluate in the context of outcomes. Evaluate the major tools used by physical geographers (e.g., isopleth mapping, thermal infrared satellite imaging, quantitative modeling, etc.). Instructional Facilities Access to the internet. Classroom with extensive whiteboards up front. Overhead projector, slide projector, and a large, mounted screen. Mounted wall maps (germane to physical geography). A large globe mounted on a moveable stand and a smaller hand-held globe. A VCR, a document camera and a computer, both wired to a ceiling-mounted data projector. GEOGRAPHY 120 PHYSICAL GEOGRAPHY: EARTH SYSTEMS page 2 Special Materials Required of Student None. Course Content Earth systems interaction; atmosphere, hydrosphere, lithosphere, and biosphere. Spatial and temporal environmental characteristics. Systems theory: energy and material flows. Physical science foundational principles: thermodynamics, force, heat and temperature, energy transformations, work, the structure of matter, phase changes, the electromagnetic spectrum, conservation principles, equilibrium, and entropy. Scientific models and theories: wave cyclone theory, plate tectonic theory, atmospheric dynamics, earth-sun relationship, energy transfers, global energy budget, climate distribution and variation, cyclogenesis, and human-environment interaction. Spatial and temporal distribution and interaction of geographic phenomenon: climate, soil, biota, tectonics, gradation. Landscape processes and features: endogenic processes and plate tectonics, exogenic processes and gradation. Scientific data collection, analysis, and evaluation. Tools of physical geography: maps, the geographic grid, global positioning systems, remote sensing and Geographic Information Systems. Method of Instruction Well-developed, academically-based lectures (hierarchically-organized, theory-based, geared toward explanation over mere description, and with an emphasis upon developing student notetaking skills). Discussion. Group activities. Slides, transparencies and instructional films. Methods of Evaluating Student Performance A grading system appropriate to a college-level introductory science course will be established by the instructor and implemented uniformly. Grades will be based upon demonstrated proficiency in subject matter by examination. A series of map quizzes are given to help students learn important locations. Objective and essay examinations on lecture and textbook, including a final exam. Homework and/or research paper. Outside Class Assignments As a three-unit lecture course, it is assumed that students will spend at least two hours outside of class for each hour spent in class. Such intense study should utilize both notes taken during lecture and textbook readings as assigned in a class syllabus. Required textbook readings. c. Auxiliary readings/handouts on First and Second Laws of Thermodynamics. d. Auxiliary use of instructional office hours, department tutoring, and/or review sessions. e. Supporting homework assignments, including: (1) The Geographic Grid. (2) Isotherm mapping. (3) Differential heating and thermal circulation. (4) Surface weather maps. (5) Global pressure and wind distribution. (6) Climate distribution and controls on natural selection. (7) Elements, compounds, minerals, and rocks. f. Supporting video-lecture or web-based assignments, including: (1) Spherical Grid Systems. (2) Heat storage Capacity: Land vs. Sea Contrast. (3) Cyclogenesis. GEOGRAPHY 120 PHYSICAL GEOGRAPHY: EARTH SYSTEMS page 3 Texts Required Text(s): (1) Strahler, Alan, O.W. Archibald. Physical Geography: Science and Systems of the Human Environment. 5th CA edition. Hoboken, NJ: John Wiley & Sons, 2011. (2) Hess, Darrel, Dennis Tasa. McKnights Physical Geography: A Landscape Appreciation. 11th edition. Upper Saddle River, NJ: Pearson. 2013. Supplementary texts and workbooks: As assigned by instructor. Veregin, Howard. Goodes World Atlas. Rand McNally, 2010. Addendum: Student Learning Outcomes Upon completion of this course, our students will be able to do the following: Memorize, apply, and explain the rationale behind classification systems developed for recognizing, explaining, and predicting relationships, patterns, and trends in Earth Systems (e.g., classification of rocks; classification of thermal vs. dynamic weather systems; forms of energy, especially associated with the energy transformations produced by atmospheric, hydrospheric, biospheric, and lithospheric processes; classification of climates in terms of the availability of the inputs to photosynthesis; classification of biomes; classification of erosional vs. depositional environments; etc.) Describe, apply, and explain the evidence behind the foundational scientific models commonly used to explain and predict relationships, patterns, and trends within Earth Systems (e.g., Copernican Model describing Earth-Sun relationships; Kinetic Theory, such as applied to systems powered by differential heating; Dynamics, such as applied to the general circulation of the atmosphere; Thermodynamics, including the unique role of water within the Earths Global Energy Budget, or the production of equilibrium landforms by the agents of gradation; Wave Cyclone theory; Plate Tectonic theory; etc.). Explain the step-by-step causes and outcomes of thermal circulation within the Earth System, including across various spatial and temporal scales (e.g., Sea Breezes vs. Monsoonal Wind Systems vs. Hadley Cells; Plate Tectonics; etc.). Discuss the unique characteristics and importance of water within the Earth System (e.g., high capacity to store heat energy per change in temperature; high latent heat associated with phase changes; radiative properties relative to infrared radiation and greenhouse warming; energy source behind convective weather systems; systematic distribution of the mechanisms by which precipitation is produced; biome variation as an evolutionary response to the distribution of water resources; significance of evapotranspiration by plants to Earths energy budget; role of water as a flux in producing magmas at subduction zones; role of water in producing clays and free ions through chemical weathering; gradational work performed by streams, waves, and glaciers producing erosional vs. depositional landforms; etc.). Date approved by the Governing Board: May 20, 2014   -.>PR_`ano{|˲{o{b{XNhR@CJOJQJheCJOJQJhe0J>*CJOJQJhR@0JCJOJQJhT0JCJOJQJhT0J>*CJOJQJhvUhe>*CJOJQJh %he5>*CJOJQJh5he>*CJOJQJh'>*CJOJQJhT>*CJOJQJhe>*CJOJQJhvU>*CJOJQJh5CJOJQJhTCJOJQJ,-.`a -  & F 0zd*$gdR@ 0 zhd*$`hgdR@ 0 rzd*$gdR@ & F 0 rzd*$gdR@ d*$ d*$gd5 $ d*$a$   2 9 : F N O ` f p ۷۞|qdXNhN|CJOJQJhT0JCJOJQJhT0J>*CJOJQJhT>*CJOJQJh2HYhT>*CJOJQJh2HYhTCJOJQJ h2HYh2HYh2HYh2HYCJOJQJhR@0JCJOJQJhR@0J>*CJOJQJhvUheCJOJQJhR@CJOJQJhTCJOJQJh %he5CJOJQJhChTCJOJQJ- 3 9 : F G N O g h o p  & F 0d*$ 0d*$ 0hhd*$^h 0hd*$ 0d*$gd2HY gd2HY 0hd*$gd2HY 0hd*$`h 0zhd*$^hgdR@  * + 8Y[hltuȻȣșșȎukaȻWh +CJOJQJh'CJOJQJheCJOJQJhvUhe>*CJOJQJhe>*CJOJQJhT>*CJOJQJh2HYCJOJQJhT0JCJOJQJhT0JCJOJQJhT0J>*CJOJQJhTCJOJQJh^CJOJQJhvUhTCJOJQJhN|CJOJQJhvUh^CJOJQJ"   + , I "  .! & F 0d*$gd2HY 0d*$ & F 0d*$ 0hd*$^h & F 0d*$ 0d*$ 0hd*$^hgdN|!c8tu7bPG & F 0d*$gdSQ 0hhd*$^hgdSQ & F 0d*$gdSQ 0d*$gdSQ d*$gdSQ & F 0d*$gd2HYFG@A$0l'*Z]uxNQknh\hvUhThSCJOJQJhvUhSCJOJQJhT0JCJOJQJhT0J>*CJOJQJhxJCJOJQJhMCJOJQJhCJOJQJh +CJOJQJhTCJOJQJ5,bAB$r 0hhd*$^hgdSQ & F 0hd*$gdSQ & F 0d*$gdSQ 0d*$gdSQ & F 0d*$gdSQi&Yt Mj 0d*$gdSQ d*$gdvU E dgdN| E 8dgdvUEdgdvU E & FdgdSQ 0d*$gdSQ*+=`alnoprsvŸŠŖňzozeWLeŖŖh9CJH*OJQJh9h9CJH*OJQJh%dCJOJQJh\6CJOJQJhN|h96CJOJQJhN|hT6CJOJQJh9CJOJQJhT0JCJOJQJhT0JCJOJQJhT0J>*CJOJQJhTCJOJQJhvUCJOJQJhvUhvUCJOJQJhvUhvU>*CJOJQJhvU>*CJOJQJ4Wrq 0hd*$gdSQ 0hd*$^gdvU 0hd*$^gdSQ & F 0hd*$gdSQ 08d*$^gdSQ & F 0d*$gdSQ 0d*$gdSQ & F 0d*$gdSQ   #2r лбwi]N?h*.h'CJOJQJ^Jhis=h'CJOJQJ^Jh'CJOJQJ^Jhh:h'>*CJOJQJh+h'>*CJOJQJh'CJOJQJh!5CJOJQJh^CJOJQJh:-h%d6CJOJQJh%dCJOJQJh\CJOJQJhTCJH*OJQJhTCJOJQJhN|hT6CJOJQJhN|hN|6CJOJQJhN|CJOJQJ u!#$''''(((!("(#($(&(d 0'd*$gdSQ 0hd*$gdSQ & F 1$^gdN?rh`hgdN?rgd' Td*$^`gd !u!v!##$$'''((((( (+(,(ǽѵh.jh.UhN|CJOJQJh2HYCJOJQJhTCJOJQJh'CJOJQJh*.h'CJOJQJ^Jh5OCJOJQJ^J&('()(*(+(,( 0'd*$gdSQ:..()()))))()00P8$BP/ =!8"8#8$% DpFs2 0@P`p2( 0@P`p 0@P`p 0@P`p 0@P`p 0@P`p 0@P`p8XV~ 0@ 0@ 0@ 0@ 0@ 0@ 0@ 0@ 0@ 0@ 0@ 0@ 0@ 0@_HmH nH sH tH H`H Normal1$CJOJQJ_HmH sH tH 88  Heading 1  & F@&88  Heading 2  & F@&88  Heading 3  & F@&88  Heading 4  & F@&88  Heading 5  & F@&88  Heading 6  & F@&88  Heading 7  & F@&88  Heading 8  & F@&d @d  Heading 9' $ 0hhd*$@&^h>*CJOJQJDA`D Default Paragraph FontViV  Table Normal :V 44 la (k (No List 4+4  Endnote Text>* > Endnote ReferenceH*66  Footnote Text@& !@ Footnote ReferenceH*8/18 a1CJOJQJkHmH sH u0OA0 GC OUTLINE 10OQ0 GC OUTLINE 2.a. Right Par 1.q. Right Par 2.. Right Par 3.. Right Par 4.. Right Par 5.. Right Par 6.. Right Par 7.. Right Par 800 GC OUTLINE 300 GC OUTLINE 4,, Document 86/6 Document 4 56CJ,!, Document 6,1, Document 5H/AH Document 2CJOJQJkHmH sH u,Q, Document 7.a. BibliogrphyH/qH Document 3CJOJQJkHmH sH u`/` Document 1($$ 0*$1$CJOJQJ_HmH sH tH (( Doc InitF/F Tech InitCJOJQJkHmH sH u.. Technical 5.. Technical 6J/J Technical 2CJOJQJkHmH sH uJ/J Technical 3CJOJQJkHmH sH u.. Technical 4J/J Technical 1CJOJQJkHmH sH u.. Technical 7.!. Technical 8010 GC OUTLINE 50A0 GC OUTLINE 60Q0 GC OUTLINE 70a0 GC OUTLINE 8NN TOC 1)7 $ 0*$]^`0JJ TOC 2%8 $ 0*$]^`0JJ TOC 3%9 $ p0*$]^p`0JJ TOC 4%: $ @ 0*$]^@ `0JJ TOC 5%; $ 0*$]^`0BB TOC 6< $0*$^`0:: TOC 7=0*$^`0BB TOC 8> $0*$^`0BB TOC 9? $ 0*$^`0N N Index 1%@ $ `*$]^``N N Index 2%A $ 0*$]^`0>.>  TOA Heading B*$ $*"* CaptionC:/A: _Equation CaptionbC@Rb Body Text IndentE 0hd*$^h CJOJQJPK![Content_Types].xmlN0EH-J@%ǎǢ|ș$زULTB l,3;rØJB+$G]7O٭Vc:E3v@P~Ds |w< , J   ,(!#- !&(,( "$8@0(  B S  ??@A -  - =*urn:schemas-microsoft-com:office:smarttags PlaceType=*urn:schemas-microsoft-com:office:smarttags PlaceName9*urn:schemas-microsoft-com:office:smarttagsplace      ! " # $ & ' ) - -3 r s #<E#-or tu - 333333333333333oo||   2'()*Z[\]uvwxNOPQklmn**`a  %.02  - oo||   2'()*Z[\]uvwxNOPQklmn**`a  %.02       ! " # $ & ' ) -  C F T7cR#: `-$tV7I r u" @|'uk!x-Zy@.@.@()@()@)@)h ^`hH.h ^`hH.h pL^p`LhH.h @ ^@ `hH.h ^`hH.h L^`LhH.h ^`hH.h ^`hH.h PL^P`LhH.h ^`hH.h ^`hH.h pL^p`LhH.h @ ^@ `hH.h ^`hH.h L^`LhH.h ^`hH.h ^`hH.h PL^P`LhH.hh^h`.^`.88^8`)^`()^`()pp^p`()  ^ `.@ @ ^@ `.  ^ `.88^8`o()^`. L ^ `L.  ^ `.xx^x`.HLH^H`L.^`.^`.L^`L.hh^h`.@h8^8`56>*CJOJQJo(. @_hh^h`.h ^`hH.88^8`)^`()^`()pp^p`()  ^ `.@ @ ^@ `.  ^ `.@_ |'uZyr u7I#-$k!xC 7c                   j         32 9#\ %^R@5OSS +s)+:-!5E>wCAC}CxJ+OSQjV_W2HY%d$lwnN?rY-|N|\'T>|.['U6CMHeSvUqf5  @2222, @UnknownG.[x Times New Roman5Symbol3. .Cx Arial71 CourierA$BCambria Math"9)"('kCzGWF3R:R:)P4 2Q)PHP ?>|2!xxn T Course Outline Shell [blank]GCCCDBarbara Prilaman4         Oh+'0 $ D P \ ht| Course Outline Shell [blank]GCCCD Normal.dotmBarbara Prilaman5Microsoft Office Word@@t@U@" ~R ՜.+,0 hp  GCCCD:  Course Outline Shell [blank] Title  !"#$%'()*+,-./0123456789:;<=>?@ABCDEFHIJKLMNPQRSTUVYRoot Entry F~[1Table&AWordDocument