ࡱ> _ Ubjbj FjA\jA\M%%%%%%%%8N%,z&%gQ''''''''PPPPPPP$RU Q%8)''8)8) Q%%''!QR1R1R18)%'%'PR18)PR1R1J0L'r #: GROSSMONT COLLEGE Official Course Outline GEOGRAPHY 121 PHYSICAL GEOGRAPHY: EARTH SYSTEMS LABORATORY Course Number Course Title Semester Units Semester Hours Based on an 18-hour format GEOG 121 Physical Geography: 1 3 hours laboratory Earth Systems Laboratory 48-54 total hours Prerequisites A C grade or higher or Pass or concurrent enrollment in Geography 120 or Geology 104 or equivalent. Corequisite None. Recommended Preparation None. Catalog Description Get outside and into the field! Explore Earths physical environment! This course satisfies the science lab requirement, and complements either the Physical Geography lecture course (Geog 120) or the Earth Science lecture course (Geol 104). It does so by enhancing observational and analytic skills vital to understanding Earths major physical and chemical systems, and their role in driving natural selection across the biosphere. Primary focus is upon atmospheric, hydrospheric, lithospheric, and biospheric processes, as well as on Earths place within the Solar System. As such, labs will utilize the scientific method to cover the Geographic Grid, Earth-Sun relationships, weather and climate, gradational controls on landform development and geomorphic change, tectonic work including faulting, earthquakes, hot spot volcanism, and plate boundary dynamics, the rock cycle, the hydrologic cycle, and the evolutionary response to climate variation, as studied in-the-field through habitat analysis. Students gain experience with map interpretation/analysis, unit conversions, dimensional analysis, and fieldwork using GPS, compass, clinometer, thermal IR sensors, weather instruments, and ڰAPPs campus-wide educational Rock and Native-Vegetation Zones. Course Objectives The student will: Apply in a practical manner the concepts and principles of Physical Geography, and of the Earth Sciences in general, to the following systems: (1) Hydrologic System (including the Hydrologic Cycle) (2) Plate Tectonic System (including the Rock Cycle) (3) Solar System (4) Geologic Time-Scale (5) Atmospheric System (including both Weather and Climate) (6) Biospheric System (7) Gradational System. Explain Earth-Sun relationships, how this causes seasonal change, and the importance of this to controlling environmental processes and patterns on Earths surface. Explain how Earths rate-of-rotation is used in practical terms to determine longitude and solve time zone issues. d. Apply plate tectonics to understand the stresses (force couples), the structures produced (especially faults and folds, and thus mountains and basins), and the volcanics involved at different plate boundary types. GEOGRAPHY 121 PHYSICAL GEOGRAPHY: EARTH SCIENCES LABORATORY page 2 4. Course Objectives (continued) e. Identify minerals and rocks, and describe their basic properties. f. Identify how processes that shape Earth can change over geologic time. Identify how human activity can affect such processes (e.g., gradational processes relative to destabilizing a beach system). g. Effectively use maps to understand patterns in the spatial distribution of physical features and processes within the hydrosphere, atmosphere, biosphere, and lithosphere. h. Read a real weather map, relate it to the actual sky condition as simultaneously observed outside, then predict any near-term changes that are likely. i. Explain the role of natural selection in determining the distribution of biotic processes that has resulted in variation across plant families and across the Earths varied ecosystems. j. Collect, analyze, and interpret field data that demonstrates the interrelationships between climate, vegetation, and soil. k. Recognize and identify, in a specific landscape, the mass and energy flows and the environmental processes and patterns occurring across the Earths surface; ability to analyze real-world variation in these environmental processes and patterns. l. Apply, in a practical manner, the principles of the Scientific Method. m. Communicate complex course concepts effectively in writing, diagrams, maps, and graphs. Instructional Facilities Computer with access to the internet, wired to a doc-cam and a data projector, projected toward a side-mounted screen. Laboratory space (table work sites) with extensive whiteboards located in the front of the classroom. Wall maps illustrating global/regional scale spatial distributions of physical phenomena at Earths surface (e.g., physiography, climate, vegetation, geology, etc.). Physiographic globe, and a set of smaller globes (for student use at individual workstations). Extensive collection of rock and mineral samples, with a cabinet-system for organized storage Access to natural vegetation and soil samples across varying habitats (including access to the Biology Departments Outdoor Lab and its Native Plant Garden, and to the campus-wide Educational Rock and Native Plant Zones). Separate work/storage room(s) adjacent to the Earth Science Lab for lab-prep activities/materials Weather instruments (sling psychrometers, thermal IR sensors, barometer, hygrometer, etc.). Real-time weather maps (i.e., real-time access to duplicating equipment) Basic field equipment to include: tape measures, meter sticks, rock hammers, electric-tape (for depth-to-water in groundwater wells), etc. Basic lab equipment to include: thermometers, beakers, stands, heat lamps, stop-watches, microscopes, etc., in a well-lighted lab room generously equipped with electrical outlets. USGS topographic maps. Class set of GPS units and navigational software. Class set of orienteering compasses, clinometers, and powerful hand-lenses Laptop computers for field use. Special Materials Required of Student Scientific calculator. USGS 7 Minute Series Topographic Maps (e.g. El Cajon, La Jolla, La Mesa). Ruler, pencil compass, compass protractor, and colored pencils. Batteries (for GPS units). Course Content A series of integrated observations, experiments, assignments, exercises, and lab write-ups focusing on the following: overview and use of the scientific method and quantitative reasoning; Earths size, shape, and movements-in-space; the importance of solar energy and the Global Energy Budget to environmental patterns and processes at Earths surface; overview of Earths subsystems including tectonic, petrologic, geomorphic, hydrospheric, oceanographic, atmospheric, and biospheric (biotic) GEOGRAPHY 121 PHYSICAL GEOGRAPHY: EARTH SYSTEMS LABORATORY page 3 Course Content (continued) processes that shape Earths surface environments; actual distribution of solar radiation, weather patterns, ocean currents, climates, ecosystems, physiographic features (landforms), plate boundaries, and tectonic work including resultant geologic structures, volcanism, and rock cycling; and, practical experience in using a variety of tools and concepts common to Physical Geography and the broader Earth Sciences. More specifically: a. The Earth Sciences (1) What is Earth Science (2) The Scientific Method and Hypothesis Testing (3) Mass and Energy Laws (4) Systems Approach (Formation of the Universe; Solar System; Earth as a system; Earth subsystems) (5) Units, Unit Conversions, Dimensional Analysis, Graphing, and Scientific Notation b. The Geographic Grid (1)Earths Size and Shape; Great Circles; Globes vs. Maps (2) Angular Measure, the Unit Circle, and application of Trig Functions (3) Parallels and Meridians; Latitude/Longitude System (4) Environmental Patterns and Real-Word Variation: Scales-of-Analysis c. Geospatial Tools and Techniques (1) Isoline Mapping (contours, isotherms, isobars, etc.) (2) USGS 7 Minute Series Topographic Maps (3) Compass and Clinometer (bearings, orienteering, strike and dip) (4) GPS: Datums, Grid Systems, Waypoints (e.g., canvassing for groundwater wells/establishing MPs) (5.)Township and Range System (e.g., well numbering by CA State Dept. of Water Resources) d. Astronomy and Movements of the Earth in Space (1) The Solar System: Gravitational Force and Density Segregation (2) Electromagnetic Radiation: Stefan-Boltzmann, Wiens Law, and the Spectrum (3) Earth-Sun Relationships and Insolation Receipt a. Rotation: Diurnal Variation b. Revolution: Solar Declination, the Analemma, Zenith vs. Sun Angle, and the Seasons (4) Rotating Frames-of-Reference: Time-Keeping and Coriolis Effect e. Earths Internal Forces and Tectonic Stresses (1) Endogenous Energy (2) Plate Tectonics a. Geologic Structures: Folds, Fractures, and Faults b. Mountain Building c. Earthquakes d. Volcanoes f. Earth Materials (1) Minerals: Classification and Identification (2) The Rock Cycle: Igneous, Sedimentary, and Metamorphic Rocks (3) Rock Weathering and Soils g. Earth History (1) The Geologic Time Scale (2) Relative vs. Absolute Dating (3) Fossils and Fossilization (4) Paleogeography: Spatial Patterns through Time h. Earths External Processes (Geomorphic/Atmospheric Processes shaping Surface Environments) (1) Surface Water, Watersheds, Aquifers, and Groundwater (2) Glaciers, Glaciation, and Global Sea Level Change (3) Deserts: Orographics vs. Subtropical Dynamic Highs (4) Landforms and Gradational Systems a. Gradational Agents b. Gradational Processes: Erosional vs. Depositional Landforms c. Exogenous Energy (5) Global Distribution of Earths Major Physiographic Features GEOGRAPHY 121 PHYSICAL GEOGRAPHY: EARTH SCIENCES LABORATORY page 4 7. Course Content (continued) i. Atmospheric State Variables (1) Temperature and Temperature Distribution a. Kinetic Theory: Heat vs. Temperature b. Cycles of Insolation and Temperature c. Albedo vs. Absorption d. Response to Absorption: Specific Heat (land vs. water) and Continentality (2) Pressure and Pressure Distribution a. Thermal vs. Dynamic b. Winds: Global vs. Synoptic vs. Mesoscale (3) Atmospheric Moisture and Phase Changes a. Measures of Humidity (Specific vs. Relative vs. Saturation-Specific) b. Sensible vs. Latent Heat c. Cloud Development and Classification j. Weather Systems (1) Weather Patterns and Synoptic-scale Weather Maps (2) Cyclonic Storms vs. Anticyclones (3) Severe Weather, Fire Weather, and Mesoscale Meteorology k. Climate System (1) Controls on Climate and Change (2) Global Distribution of Earths Major Climates (3) Topography and Microclimates l. Physical Oceanography (1) Oceanic Circulation a. Gyres: Warm vs. Cold Currents b. Ocean/Atmosphere Interactions (e.g., El Nino/Southern Oscillation Events) (2) Coastlines: Littoral Cells and Sand Budgets m. Biogeography, Ecosystems, and Natural Selection (Biotic Processes shaping Surface Environments) (1) Climate and Earths Biome Distribution (2) Microclimate and Habitat Variation (3) Taxonomy and Convergent Evolution (4) Habitat Analysis: Azimuth Variation in Coastal Sage Scrub Ecosystem Activities: The scientific method. Units, unit conversions, scientific notation, and dimensional analysis. The geographic grid, including Earth size and shape. Compasses and clinometers; strike and dip. Astronomy and Earth-Sun Relationships: rotation, revolution and solar energy. Zenith and Sun angle; insolation variation; determining time and Latitude/Longitude across Earths surface. Daily and Annual cycles of insolation and temperature. Variation in thermal properties: principle of continentality, albedo effect. Pressure distribution, winds, weather maps and map interpretation. Atmospheric moisture and clouds; measures of humidity; use of psychrometric tables. Oceanic gyres; warm vs. cold currents; linkage to the atmospheric system. Use of handheld GPS (global positioning system) receivers for canvassing. Biogeography: microclimate variation on humidity, surface temperature, and plant canopy temperature. Coastal sage scrub ecosystem, plant taxonomy, natural selection, and convergent evolution. Field trips onto north vs. south facing slopes in Coastal Sage Scrub; comparison by usage of campus-wide Educational Rock and Native Plant Zones. Topographic maps and contour lines; map interpretation; determining slope and river gradients. Surface processes and landform produced by running water and stream gradation. GEOGRAPHY 121 PHYSICAL GEOGRAPHY: EARTH SCIENCES LABORATORY page 5 7. Course Content (continued) Surface processes and coastal sand budgets driven by wave gradation and oceanic littoral cells. Plate tectonics, volcanoes, and earthquakes; determining epicenter; volcano distribution relative to plate location. Faults and folds; neo-tectonic geomorphology; inferring transtensional and transpressional stresses from fault geometry. Relative and absolute dating; the Geologic Time Scale; Hawaiian Hotspot as used to determine rates of plate motion. Mineral properties and identification. Rock properties and identification; the rock cycle. 8. Method of Instruction Introductory briefings, demonstrations, problem-solving examples, Internet-supplied real-time and long-term ancillary data (e.g., GOES weather satellite loops, real-time seismic maps from the Southern California Earthquake Center, Calphoto native plant repository from UC Berkeleys Natural History Museum, UCSB/NSF-funded tectonic animations on Tanya Atwaters famed webpage, USGS NWIS real-time hydrology website, etc.), followed by collective hypothesis generation. In-Lab: Thorough and hierarchically-integrated assignments and exercises completed under instructor supervision in either small teams or individually (e.g., use of analemma; analysis of topographic maps relative to neo-tectonic features along active fault zones; construction and analysis of weather maps; identification of rock, mineral, and plant specimen; graphing and analysis of annual insolation and temperature data for differing locations; use of sun angle to calculate latitude; computation of dollar-value of the water precipitated by a given storm across a watershed with a given reservoir capture-rate; etc.). In-Lab: Thorough and hierarchically-integrated experiments, including data collection and data manipulation, completed under instructor supervision in small teams at in-lab work-stations (e.g., heat lamp experiments with sand vs. water, and with dark vs. light materials; leaf structures in desert vs. coastal species of Encelia genus reflecting selective pressures introduced by Late-Cenozoic uplift of the Peninsular Range; etc.). In-Field: Structured and hierarchically-integrated observations, measurements and data collection, related problem solving, analysis, and other assignments and exercises completed in-the-field under instructor supervision in small teams (e.g., plant transects along north vs. south facing slopes in native Coastal Sage Scrub habitat; GPS canvassing; use of compass and clinometer; trichome variation across various species of the genus Quercus; evaluation of clast shape and petrologic makeup of the Eocene-age Stadium Conglomerate in terms of deducing paleo-gradational environment and original source location; evaluation of fossils recovered from overlying Eocene-age Mission Valley Formation; etc.). Methods of Evaluating Student Performance In-Lab: Exercises, activities, experiments, data measurement and collection, and quantitative analysis. Communication of these analyses, and of core concepts, by effective drawing of graphs and diagrams, and by written reports and lab write-ups. In-Field: Exercises, activities, experiments, data measurement and collection, and quantitative analysis. Communication of these analyses, and of core concepts, by effective drawing of graphs and diagrams, and by written reports and lab write-ups. Quizzes given periodically to assess comprehension, and to enhance mastery of base knowledge (e.g., review of lab-overview handout packets; rock identification of hand specimen; etc.). A midterm and a comprehensive final examination. 10. Outside Class Assignments Overview of concepts covered by each upcoming lab via a weekly, integrated handout-packet. Completion of occasional lab write-ups/reports. Reference to lecture text is occasionally suggested for general topical overview. (An accessible collection of such texts is maintained for student use.) GEOGRAPHY 121 PHYSICAL GEOGRAPHY: EARTH SCIENCES LABORATORY page 6 11. Texts a. An instructor-designed and campus-integrated lab manual; assignments, handouts, and pre-lab overviews are written to systematically, thoroughly, and efficiently maximize course content, student learning, and integration of available resources (including both the resources of the Earth Science Laboratory, and of the campus-wide Educational Rock and Native Garden Zones, as designed cooperatively with major input from Earth Science Department faculty). b. USGS 7 Minute Series Topographic Maps: La Mesa, El Cajon, and La Jolla Quads c. Supplementary Text(s) are at the discretion of the instructor, such as those used in the Geography 120 or Earth Science 104 lecture sections including: Strahler and Strahler: Physical Geography: Science and Systems of the Human Environment, 5th CA Ed., Wiley. 2011. Hess and Tasa: McKnights Physical Geography: A Landscape Appreciation, 11th Ed., Pearson. 2013 Tarbucks, Lutgens, and Tasa. Earth Science, 13th Ed., Pearson. 2011. Addendum: Student Learning Outcomes Upon completion of this course, our students will be able to do the following: Develop observational skills related to reading the landscape (e.g., relating changes in solar declination to seasonal variation; relating changes in longitude to differences in time keeping; relating real-time weather observations to synoptic-scale weather maps; developing and using morphologic classification systems (e.g., mafic vs. felsic igneous rock classification; the biologic taxonomy; etc.); development of hypotheses derived from observation-based rationales; relating stream offsets, sagponds, and pressure ridges, as found on topographic maps, to lateral-fault location, and direction and rate of displacement; etc.). Develop the ability to recognize and name the individual components of the physical environment, and of interrelationships between and spatial patterns produced by these individual components (e.g., recognition of dominant plant species within Coastal Sage Scrub biome; recognition of species variation by habitat (e.g., north vs. south facing slopes) within a biome; recognition of typical San Diego weather features and patterns (e.g., inversions, sea-breezes, downslope adiabatics, synoptic-scale Highs vs. synoptic-scale Lows vs. mesoscale Lows); etc.). Develop technical skills and experience utilizing the tools of Physical Geography to collect data ( e.g., spherical grid systems; compasses and clinometers; GPS receivers; infrared guns; psychrometers and psychrometric tables; wading rods, pygmy meters, tag lines, shovels, and velocity-discharge ratings; etc.). Develop technical skills used to analyze and interpret the data of Physical Geography (e.g., usage of the analemma, topographic maps, synoptic-scale weather maps, seismographs, hydrographs, etc.; application of conversion factors, trig functions, graphing, isoline mapping, topographic profiling, etc.). Illustrate the scientific method (e.g., hypothesis testing using the age of Hawaiian Island basalts relative to their distribution to predict direction and rate of plate motion; hypothesis testing using the temperature response of sand vs. water relative to radiation inputs to explain continentality; hypothesis testing of the temperature response of dark vs. light colored material relative to radiation inputs to account for natural selection of leaf structures present on Encelia farinosa vs. E. californica; etc.). Date approved by the Governing Board: May 20, 2014   +,-OQ^_ikxzʿtdWJhyh,WCJOJQJhyhQ7CJOJQJh hQ76CJOJQJaJh 6CJOJQJaJh CJOJQJhy0J>*CJOJQJhQ70JCJOJQJhQ70J>*CJOJQJh&hy>*CJOJQJh8gk>*CJOJQJhv1>*CJOJQJhQ7>*CJOJQJhy>*CJOJQJh&>*CJOJQJhQ7CJOJQJ+,-jk 9 : H I  0hd*$gd~X gd~X 0hd*$gdWhR 0hhd*$^h & F 0d*$ d*$ $ d*$a$   # ' 8 9 : G H I ݩwm`UH>7 h~Xh~Xh~XCJOJQJhWhRhWhRCJOJQJhWhR5CJOJQJh&hWhRCJOJQJhWhRCJOJQJhQ70JCJOJQJhQ70J>*CJOJQJh h 5CJOJQJhQ75CJOJQJh 5CJOJQJhyhQ7CJOJQJhhy5CJOJQJh&hyCJOJQJ\hyCJOJQJhQ7CJOJQJhh,W5CJOJQJ   . 7 E Z ^ a ǼǯǕyk]kOkAh&hb!CJOJQJ\h&h&CJOJQJ\h&h5UCJOJQJ\h&h`&CJOJQJ\h&hb?fCJOJQJ\h&hCJOJQJ\h&h CJOJQJ\hQ70JCJOJQJhQ70J>*CJOJQJhQ7>*CJOJQJhQ7CJOJQJhb?fh~X5CJOJQJhfCJOJQJhWhRCJOJQJh~Xh~XCJOJQJ  0d*$^gd_V & F 0d*$ 0hhd*$^h 0hd*$^h & F 0d*$ 0d*$ 0hhd*$^h 0hd*$  " ) * / q   % ) < J Q r w x ㏫sseWh&hJ CJOJQJ\h&h5UCJOJQJ\h&hb!CJOJQJ\h&h CJOJQJ\h&h tCJOJQJ\h&h2;CJOJQJ\h&hqCJOJQJ\h&h^@FCJOJQJ\h&h CJOJQJ\h&h`&CJOJQJ\h&hCJOJQJ\h&hwCJOJQJ\"  7 ^ m $278MQRa|չ㫝ՏչՁseh&h36CJOJQJ\h&h&CJOJQJ\h&h {CJOJQJ\h&h CJOJQJ\h&h pCJOJQJ\h&hdwCJOJQJ\h&h^@FCJOJQJ\h&h2;CJOJQJ\h&hb!CJOJQJ\h&hJ CJOJQJ\h&h5UCJOJQJ\%4efn&*7=>CUVWyz䫞zmz`mzzmz```h&h.yCJOJQJh&hmvCJOJQJh_VCJOJQJh&hc;pCJOJQJh&hG=CJOJQJh&h\ CJOJQJh&hyCJOJQJh&hyCJOJQJh&hQ70JCJOJQJh&hQ70J>*CJOJQJh&hQ7CJOJQJh&hQ7CJOJQJ\%&>{P 0d*$gd>3 06$d*$gdgd 0hd*$^hgdMZ & F 0d*$gd & F 0d*$ 0d*$`gd_V 08d*$^8`gd_Vz{P./µµµ~~sh]OAh&h>3>*CJOJQJh&hy>*CJOJQJhy>*CJOJQJh>3>*CJOJQJh&>*CJOJQJh&h8gkCJOJQJ^Jh&h(rCJOJQJ^JhMZCJOJQJ^Jh&hCJOJQJh&hmCJOJQJh&hyCJOJQJh&h.yCJOJQJh&hmvCJOJQJh_VCJOJQJh&h\ CJOJQJ   ,PRU^}56ehǺ׫zzzn_n_n_n_zzh&hCJOJQJ^JhMZCJOJQJ^Jh&hCJOJQJh&hG=CJOJQJh&h.yCJOJQJhMZCJOJQJh&h>3CJOJQJ^Jhf0J>*CJOJQJh&h8gk0J>*CJOJQJh&h8gk0JCJOJQJh&hm'CJOJQJh&h>3CJOJQJ%  Re"CD]^; & F 0d*$ 0d*$ & F 0d*$ 0d*$^gdy 0hd*$^hgdMZ 0d*$gd>3 0hd*$gd8gk!"%tu@CD\]^󦙌vi\OiOh&h{CJOJQJh&hCJOJQJh&hcGCJOJQJhQ7CJOJQJhQ70JCJOJQJhQ70J>*CJOJQJh&h>3CJOJQJh&hyCJOJQJh&h.yCJOJQJ^Jh&h.yCJOJQJh&hCJOJQJhMZCJOJQJh&h(rCJOJQJh&hG=CJOJQJ9>?@XYab >?@JKR̿ٿٿٿٿ٥٥٘٘ٲ~~~ٿq~h&h OCJOJQJh&hHCJOJQJh&h7CJOJQJh&hCJOJQJh&hyCJOJQJh&hCCJOJQJh&hQ7CJOJQJh&h~XCJOJQJh&h{CJOJQJh&hcGCJOJQJh&hCJOJQJ,@@\|} & F 0hd*$gd & F 0d*$ 0d*$ & F 0d*$gdC & F 0d*$gd{ & F 0d*$ & F 0d*$gdteRS^~+45A[\{|}ٿٲٿ٥ٿٿ昋~tghQ70J>*CJOJQJhQ7CJOJQJh&hCwyCJOJQJh&h>4CJOJQJh&hyKCJOJQJh&hCJOJQJh&hHCJOJQJh&hQ7CJOJQJh&hjDCJOJQJh&hCCJOJQJh&h{CJOJQJh&hHCJOJQJ#/DFO_`abpqŷsi_iUH9h8yhQ70JCJOJQJhQ70J>*CJOJQJh=CJOJQJhg>CJOJQJh OCJOJQJ h&hQ7CJOJQJmH sH h&h/CJOJQJmH sH hK/h/CJOJQJmH sH hK/hQ7CJOJQJmH sH hCJOJQJmH sH hk[CJOJQJmH sH hhQ7CJOJQJhCJOJQJhQ7CJOJQJhQ70JCJOJQJFabqr d!!!!r & F 0d*$gd  0d*$gd 06$d*$gd& 0hd*$^hgd& 0hhd*$^hgd& 0hd*$^hgd8y & F 0d*$ 0d*$ & F 0hd*$ qr~ - . 7 = U Z _ j !!!K!O![!a!b!d!!!ʽ佰ף|||||nh*CJOJQJhCJOJQJh*CJOJQJh*CJOJQJ!!y#####Q$_$$$%Q%%%%/&[&&' 0hd*$gdMZ 0d*$gdMZ 0hd*$gd& 0hd*$^hgd$? 0hhd*$^hgd ############### $P$Q$S$_$`$c$d$}$$$$$$$$$$$$%ϵ樛tgZh%%%%%%%%%%%%%%%%%%%%%%%%%!&/&0&1&2&3&4&&ϵϨܑwܑjCJOJQJhCJOJQJhCJOJQJh'CJOJQJ)''c'''((_((()N)e)z))))))-*n*** 0hd*$`hgdMZ 08hd*$`hgdt  0h8d*$gd& 0d*$gdMZ'''''&(,(-(.(/(0(G(^(_(d(n(s(((((((((((())) )7);)M)N)O)P)Q)R)S)d)߸߸ߞ߄wjjhCJOJQJh䴳ϴ))))))))))))))))))))))))**-*.*/*0*1*2****************************Ÿ摞ܑ'CJOJQJhCJOJQJh'CJOJQJhCJOJQJ2,,,,,,,,,, -I-U-p-q-r-u--------------sfsfsYLhCJOJQJh*䴳ϴ䴳ϴ$>䴳ϴ----....2...................////-/=///////////¸¸wCJOJQJhCJOJQJhCJOJQJh 0d*$gdMZ 0d*$`gdMZ 0hd*$`hgdKyM 0d*$gdMZ1-121|1}1~111111111222222 2(2:2;2<2=2>2?222222222222222222µ¨ܞܔܞܔzܞܔܞCJOJQJh<>䴳ϴ䴳ϴCJOJQJhh\CJOJQJh$>h\>*CJOJQJhKyM5CJOJQJhk[h\5CJOJQJ!2222A3v333[444"5v55 6c6 & F 0d*$1$gd y$ & F 0d*$gd & F 0d*$gdk) & F 0d*$gd+ & F 0d*$gd O 0d*$^gd8y 0hd*$gdKyM"5t5u5v555555555 6 6b6c6n6o6p6666677_7b7777777 8 8 888濥濋̋}pehKyM>*CJOJQJhKyMhKyMCJOJQJhKyMhKyM>*CJOJQJhKyMhV/wCJOJQJhKyMhxCJOJQJhKyMh]OCJOJQJhKyMh y$CJOJQJhKyMhCJOJQJhKyMhk)CJOJQJhKyMhuCJOJQJhKyMh5CJOJQJhKyMhvCJOJQJ%c6p66_778888V8W8X8v8w88L999:`: 06$d*$gd'L 0hd*$gdKyM 0d*$gdKyM & F 0d*$gdKyM & F 0d*$gd O 0d*$^gd y$888N8T8U8V8X8[8u8v8w888888889J9K9L9a9b9999ŷzm`zmSm`mhKyMh>3䴳ϴ󰭲5䴳ϴ󰭲ٱ䴳ϴ󰭲䴳ϴ󰭲k)䴳ϴ󰭲(䴳ϴ$>>*䴳ϴ󰭲>*䴳ϴ󰭲>*䴳ϴ󰭲䴳ϴ󰭲'䴳ϴ󰭲'>*䴳ϴ'䴳ϴ󰭲5Cϴ9999!:7:8:9::::::::::::+;1;;;̿̿հ󰭲6Cϴ󰭲'6Cϴ󰭲'䴳ϴ󰭲^䴳ϴQ7䴳ϴQ70䴳ϴQ70>*䴳ϴ0䴳ϴ0䴳ϴ&䴳ϴ󰭲䴳ϴ󰭲5䴳ϴ󰭲>3䴳ϴ󰭲ٱ䴳ϴ󰭲(䴳ϴ:::::<>?@gChCCC{n 0d*$gd6_; & F 0d*$ & F 0hd*$gd(Kgd & F 0hd*$ & F 0hd*$gd & F 0hd*$gd{b 0hd*$gdA 0d*$ & F 0d*$gd O M;O;o;;;;;;;;;;<<< <*<Q<U<X<c<d<o<<<<<<<<<<ǹչչչǞwj]jPjjhKyMhQ7CJOJQJhKyMh(CJOJQJhKyMh{bCJOJQJhKyMh{CJOJQJhKyMh^CJOJQJhKyMhCJOJQJhKyMh'CJOJQJhKyMh'6CJOJQJhKyMh 6CJOJQJhKyMh(6CJOJQJhKyMhU6CJOJQJhKyMhJ%6CJOJQJhKyMh+6CJOJQJ<==3=4=h=r=y=======&>D>>>>>>>>$?.?/?0?_?`?j?k?t???????ʼؼؼخخؠxkxkxkxkxʠhKyMh'CJOJQJhKyMh(CJOJQJhKyMhCJOJQJhKyMh>36CJOJQJhKyMh6CJOJQJhKyMh6CJOJQJhKyMh+6CJOJQJhKyMh'6CJOJQJhKyMh{b6CJOJQJhKyMh{bCJOJQJhKyMh{CJOJQJ%???@6@=@@@@@@@A AA+A7A]AaAiAAAAZBaBuBBBB CcCշviv[MMշhKyMh 6CJOJQJhKyMh(6CJOJQJhKyMh>3CJOJQJhKyMh{bCJOJQJhKyMhCJOJQJhKyMh(CJOJQJhKyMh{CJOJQJhKyMhCJOJQJhKyMh6CJOJQJhKyMh6>*CJOJQJhKyMh6CJOJQJhKyMh6CJOJQJhKyMhx6CJOJQJcCeCgChCCCCCCCCCCCPD]DDDDDEEEE=F@Fɺyyyl_REhKyMh|!CJOJQJhKyMh y$CJOJQJhKyMhxCJOJQJh$>huCJOJQJhKyMhCJOJQJhKyMh-CJOJQJhKyMh6_;CJOJQJhKyMhhCJOJQJhKyMhsCJOJQJhKyMhQ70JCJOJQJhKyMhQ70J>*CJOJQJhKyMhv1CJOJQJhKyMh(CJOJQJhKyMhCJOJQJCDEE=FnFoFFFFGGGG 06$d*$gd$> 0d*$gd$> & F 0d*$gdW 0hd*$gdf. 0d*$ 0d*$^gd y$ & F 0hd*$gdh & F 0hd*$gdu @FnFoFrFsFFFFFFGGG#G6GCGGGGGGGGG󞑄wwmcUHhKyMhKyMCJOJQJhKyMhKyM>*CJOJQJh$>CJOJQJhhCJOJQJhKyMh:CJOJQJhKyMh VCJOJQJhKyMhxCJOJQJhKyMhhCJOJQJhQ7CJOJQJhQ70JCJOJQJhQ70J>*CJOJQJhf.0JCJOJQJhf.hf.0JCJOJQJhY&PCJOJQJhKyMhQ7CJOJQJGGHHI"JJ/KKKKzKgdd & F 080d*$`0gd( & F 088d*$^8gd( 0hd*$^hgdf. 0d*$^`gdf. 0d*$ 0hd*$gdf. 0d*$gd y$ GHHHHH HH4HAHI I>IAIzI{I}IIIIIIIIIIII"J%J̿~m\MhKyMhf.0JCJOJQJ hKyMhk[CJOJQJmH sH hKyMhf.CJOJQJmH sH hKyMhQ7CJOJQJhKyMhk[CJOJQJhKyMhxCJOJQJhKyMhTODCJOJQJhKyMh:CJOJQJhKyMhf.CJOJQJhQ7CJOJQJhQ70JCJOJQJhQ70J>*CJOJQJhf.hQ70J>*CJOJQJ%J)J2JDJOJkJJJJJJJ KKKKKK"K'K(K-K/K=K>ӷİijhַ󰭲䴳ϴ󰭲$>䴳ϴ$>䴳ϴ$>䴳*ϴ$>䴳ϴ󰭲>*䴳ϴ$>(6Cϴ$>6Cϴ󰭲䴳ϴ󰭲0䴳ϴ󰭲0䴳ϴ󰭲0䴳ϴ󰭲:0䴳ϴ>ܰɰⰭİKKKKKKKKKKKKKK伯װעr±:1>*䴳ϴ+1>*䴳ϴ䴳ϴ5Cϴ$>䴳*ϴ$>䴳ϴ󰭲$>䴳ϴ󰭲䴳ϴ󰭲(䴳ϴ$>(䴳ϴ$>䴳*ϴ$>䴳ϴ$>䴳ϴ$>6CϴKKKNP/峧*CJOJQJDA`D Default Paragraph FontViV  Table Normal :V 44 la (k (No List 4+4  Endnote Text>* > Endnote ReferenceH*66  Footnote Text@& !@ Footnote ReferenceH*8/18 a1CJOJQJkHmH sH u0OA0 GC OUTLINE 10OQ0 GC OUTLINE 2.a. Right Par 1.q. Right Par 2.. Right Par 3.. Right Par 4.. Right Par 5.. Right Par 6.. Right Par 7.. Right Par 800 GC OUTLINE 300 GC OUTLINE 4,, Document 86/6 Document 4 56CJ,!, Document 6,1, Document 5H/AH Document 2CJOJQJkHmH sH u,Q, Document 7.a. BibliogrphyH/qH Document 3CJOJQJkHmH sH u`/` Document 1($$ 0*$1$CJOJQJ_HmH sH tH (( Doc InitF/F Tech InitCJOJQJkHmH sH u.. Technical 5.. Technical 6J/J Technical 2CJOJQJkHmH sH uJ/J Technical 3CJOJQJkHmH sH u.. Technical 4J/J Technical 1CJOJQJkHmH sH u.. Technical 7.!. Technical 8010 GC OUTLINE 50A0 GC OUTLINE 60Q0 GC OUTLINE 70a0 GC OUTLINE 8NN TOC 1)7 $ 0*$]^`0JJ TOC 2%8 $ 0*$]^`0JJ TOC 3%9 $ p0*$]^p`0JJ TOC 4%: $ @ 0*$]^@ `0JJ TOC 5%; $ 0*$]^`0BB TOC 6< $0*$^`0:: TOC 7=0*$^`0BB TOC 8> $0*$^`0BB TOC 9? $ 0*$^`0N N Index 1%@ $ `*$]^``N N Index 2%A $ 0*$]^`0>.>  TOA Heading B*$ $*"* CaptionC:/A: _Equation Caption<R< FY&PHeader E H$mHsH>/a> EY&P Header CharCJOJQJtH < r< HY&PFooter G H$mHsH>/> GY&P Footer CharCJOJQJtH HH Jwv Balloon TextICJOJQJ^JaJN/N IwvBalloon Text CharCJOJQJ^JaJ@@@ { List Paragraph K^PK![Content_Types].xmlN0EH-J@%ǎǢ|ș$زULTB l,3;rØJB+$G]7O٭VvnB`2ǃ,!"E3p#9GQd; H xuv 0F[,F᚜K sO'3w #vfSVbsؠyX p5veuw 1z@ l,i!b I jZ2|9L$Z15xl.(zm${d:\@'23œln$^-@^i?D&|#td!6lġB"&63yy@t!HjpU*yeXry3~{s:FXI O5Y[Y!}S˪.7bd|n]671. tn/w/+[t6}PsںsL. J;̊iN $AI)t2 Lmx:(}\-i*xQCJuWl'QyI@ھ m2DBAR4 w¢naQ`ԲɁ W=0#xBdT/.3-F>bYL%׭˓KK 6HhfPQ=h)GBms]_Ԡ'CZѨys v@c])h7Jهic?FS.NP$ e&\Ӏ+I "'%QÕ@c![paAV.9Hd<ӮHVX*%A{Yr Aբ pxSL9":3U5U NC(p%u@;[d`4)]t#9M4W=P5*f̰lk<_X-C wT%Ժ}B% Y,] A̠&oʰŨ; \lc`|,bUvPK! ѐ'theme/theme/_rels/themeManager.xml.relsM 0wooӺ&݈Э5 6?$Q ,.aic21h:qm@RN;d`o7gK(M&$R(.1r'JЊT8V"AȻHu}|$b{P8g/]QAsم(#L[PK-![Content_Types].xmlPK-!֧6 0_rels/.relsPK-!kytheme/theme/themeManager.xmlPK-!R%theme/theme/theme1.xmlPK-! ѐ' theme/theme/_rels/themeManager.xml.relsPK] M!  zRq!#%Z&'d)*,-/12"589M;<?cC@FG%J>KKU+-.0124578:;=>@ABDEGHJKMNPRSUVWXZ\]^` !'*p-/2c6`:CGKUU,/369<?CFILOQTY[_a8@0(  B S  ?gGhGiG M M9*urn:schemas-microsoft-com:office:smarttagsplace=*urn:schemas-microsoft-com:office:smarttags PlaceType=*urn:schemas-microsoft-com:office:smarttags PlaceName !i r e f  !-OY $$x$$$$$$$$$$$$$$r%s%m&{&,,111133*52568=8#:+:Z:a:??AAAAB BBBB B8Cz>??"B#BCCMM333333333333333'9::&&AC{ . /  R U   5 6 e h "%tudd)xxyy**0X0??CCiMiMMMMMMMMMMMMMMM'9::&&AC{ . /  R U   5 6 e h "%tudd)xxyy**0X0??CCiMiMMMMMMMMMMMMMMM#: `N3%7~T&SMI)U45: `77I &*L'La"qNrA]zqUPL)%SUr u" @|'uZy@.@.@()@()@)@)hh^h`.^`.88^8`)^`()^`()pp^p`()  ^ `.@ @ ^@ `.  ^ `.88^8`o()^`. L ^ `L.  ^ `.xx^x`.HLH^H`L.^`.^`.L^`L.hh^h`CJOJQJo(.^`5CJOJQJaJo(.88^8`CJOJQJo(.^`CJOJQJo(.^`o((a)p ^p`o(()  ^ `o(.@ @ ^@ `o(. ^ `o(.hh^h`CJOJQJo(.^`5CJOJQJaJo(.88^8`CJOJQJo(.^`CJOJQJo(.^`o((a)p ^p`o(()  ^ `o(.@ @ ^@ `o(. ^ `o(.hh^h`.^`.88^8`)^`()^`()pp^p`()  ^ `.@ @ ^@ `.  ^ `.h ^`hH.h ^`hH.h pL^p`LhH.h @ ^@ `hH.h ^`hH.h L^`LhH.h ^`hH.h ^`hH.h PL^P`LhH.hh^h`.hh^h`CJOJQJo(.^`CJOJQJaJo(.88^8`CJOJQJo(.^`CJOJQJo(.^`o((a)p ^p`o(()  ^ `o(.@ @ ^@ `o(. ^ `o(.hh^h`CJOJQJo(.^`5CJOJQJaJo(.88^8`CJOJQJo(.^`CJOJQJo(.^`o((a)p ^p`o(()  ^ `o(.@ @ ^@ `o(. ^ `o(.h ^`hH.h ^`hH.h pL^p`LhH.h @ ^@ `hH.h ^`hH.h L^`LhH.h ^`hH.h ^`hH.h PL^P`LhH.h ^`hH.h ^`hH.h pL^p`LhH.h @ ^@ `hH.h ^`hH.h L^`LhH.h ^`hH.h ^`hH.h PL^P`LhH.@h8^8`56>*CJOJQJo(. @_@_|'uZyr u7I#"qN&*LI)T&N3%zqU%SUU457Jh[                                   Dy^<J>4<> &-e t d  J XxA=uo+ Ah@&^(MuZ |!A"" y$P>'((\()k)+ɴ,,-/002>3=436Q79:2;6;<G=$>&>R>g>B@nCjDTOD^@FCFHH&JK>PKyK&LLML_LWMtMKyM OOOY&PQe QWhRyU5U V0LVeX41YMZ5Z7R_`0=a{b~0cdgdtef''fb?f@j8gkyk*mc;pqq(rs7s:s tyvww wV/wdwCwyY8zM|6{!2$U6,Wyu&'|\ f.K/ewCR ^\_Vv~Xm'Y?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abdefghijklmnopqrstuvwxyz{|}~Root Entry F`ww