ࡱ> mola 4bjbj FqAbAb,PP########8$$d#]?f%%%%%%%%>>>>>>>$@yC?#2'%%2'2'?##%%?+++2'#%#%>+2'>++6; =%@>('<<>-?0?<dD8)TD8 =D# =%0&"+5&Q&%%%??*T%%%]?2'2'2'2'D%%%%%%%%%PB ": GROSSMONT COLLEGE Official Course Outline GEOGRAPHY 140 METEROLOGY: WEATHER AND CLIMATE Course Number Course Title Semester Units Semester Hours GEOG 140 Meteorology: Weather 3 3 hours lecture: 48-54 hours and Climate 96-108 outside-of-class hours 144-162 total hours Prerequisites None. Corequisite None. Recommended Preparation None. Catalog Description This physical science course explains the principles that drive daily weather and long-term climate variation. Explanations will focus upon the composition and structure of the atmosphere, the input of solar radiation, the corresponding atmospheric energy budget, the resultant changes in the state of the atmosphere (in terms of temperature, pressure, humidity, winds, air masses, fronts, clouds, and fog), and the average situation as expressed by the climate distribution and its change-over-time. Highlights include explanation of jet streams and winter cyclonic storms, as well as late-summer hurricanes and monsoonal thunderstorms, autumnal Santa Ana-driven fires, and springtime marine layer stability vs Tornado Alley severe weather instability. Special attention is given to real-time weather events and forecasting, especially by way of current weather maps and satellite imagery vs. climatological data. Course Objectives The student will: Analyze the characteristics of the troposphere that make it and not the stratosphere the zone of weather. b. Know the significance of the atmospheric state variables (temperature, pressure, and humidity) and their interaction upon atmospheric phenomena (including moisture, cloud, and precipitation processes, as nested within the context of weather systems including their distribution, timing, and production of extreme events) at all scales-of-analysis. c. Examine the atmospheric energy budget and the associated flows of mass operating at various spatial and temporal scales (especially global, synoptic, meso, and micro scales), and, perturbations introduced both naturally and anthropogenically. d. Differentiate the underlying principles which govern these flows of mass and energy , and thus the atmospheric processes they produce. Thus, two main branches of physical science are extensively utilized: dynamics and thermodynamics. e. Compare and contrast the prevailing scientific models that systematically explain and predict atmospheric behavior (e.g., kinetic theory, Bergeron process, hydrostatic equilibrium, thermal vs. dynamic forcing mechanisms, thermodynamics of water, atmospheric profiling, cyclogenesis, atmospheric teleconnections, ocean-atmosphere interactions, etc.). f. Distinguish the resultant weather and climate patterns typically produced across Earths surface, and, describe changes in these distributions through space and time, including future implications. g. Appraise San Diegos weather and climate, including the most-common weather-producing patterns. GEOGRAPHY 140 METEOROLOGY: WEATHER AND CLIMATE page 2 4. Course Objectives (continued) h. Examine the nature of the scientific method, especially the ways in which meteorologists and climatologists collect data, develop explanations, and then re-evaluate in the context of actual outcomes. i. Utilize the modern tools and technologic innovations available to meteorologists and climatologists (e.g., enhanced thermal infrared satellite imaging, isopleth mapping including upper-air and surface weather maps, WDR88D radar, Stve and Log-T Skew-P thermodynamic charts, and General Circulation Models and their application to forecasting synoptic-scale meteorology, to interpreting decadal oscillations, and to predicting longer-term climate change of the past and future). 5. Instructional Facilities A classroom with extensive whiteboards located up-front. A large, mounted screen (located in a front corner so as to not block the whiteboards). A doc-cam and a computer (connected to the Internet), both wired to a ceiling-mounted data-projector. Mounted wall-maps including World, U.S., and California Physiography Maps, and a World Climate Map A large globe mounted on a moveable stand and a smaller hand-held globe. 6. Special Materials Required of Student Access to a computer connected to the Internet (for out-of-class map and satellite access). 7. Course Content Energy and Mass (1) Composition and Structure of the Atmosphere (2) Solar Radiation and the Seasons (3) Global Energy Budget and Temperature (4) Atmospheric Pressure and Winds Atmospheric Water (1) Measures of Humidity (2) Phase Changes and Thermodynamics of Water (3) Cloud Development, Morphology, and Classification (4) Precipitation Processes Atmospheric Dynamics: Distribution and Movement of Air (1) Thermal vs. Dynamic Pressure Systems (2) General Circulation of the Atmosphere (3) Air Masses and Fronts (4) Jet Stream Dynamics: Zonal vs. Meridional (5) Atmospheric Stability vs. Instability Organized Weather Systems (1) Midlatitude Cyclonic Storms (2) Thunderstorms and Tornadoes (3) Tropical Storms and Hurricanes (4) Weather Forecasting and Analysis Climate and Climate Change (1) Distribution of Climate (2) Variation in Controls: Natural and Anthropogenic (3) Past Climates and Future Climate Projections Physical science foundational principles: the structure of matter, phase changes, force and energy, heat vs. temperature, electromagnetic spectrum, conservation principles, work, energy transformations, energy degradation and entropy and equilibrium, dimensional analysis, unit conversions, and scales-of-analysis. g. Modern tools and technologic innovations used in meteorology and climatology (e.g., enhanced thermal infrared satellite imaging, isopleth mapping including upper-air and surface weather maps, WDR88D radar, Stve and Log-T Skew-P thermodynamic charts, and General Circulation Models and their application to synoptic-scale meteorology, to decadal-scale oscillations, and to predicting longer-term climate change of the past and future). GEOGRAPHY 140 METEOROLOGY: WEATHER AND CLIMATE page 3 8. Method of Instruction Well-developed, academically-based lectures (hierarchically-organized, theory-based, geared toward explanation over mere description, and with an emphasis upon developing student note taking skills). In-class weather map analysis. 9. Methods of Evaluating Student Performance A grading system appropriate to a college-level introductory science course will be established by the instructor and implemented uniformly. Grades will be based upon demonstrated proficiency in subject matter by examination. Exams will test knowledge of material presented during lecture and through homework and via the assigned textbook readings, and will include a final exam. Exams will all include objective questions. Additionally, exams will also require over the course of the semester various computations, analysis and interpretation of atmospheric profiles, analysis and interpretation of surface and upper-level weather maps, and the writing of several major essays. 10. Outside Class Assignments a. Required textbook readings. b. Supporting homework assignments, including: (1) Isopleth mapping. (2) Description and explanation of Earths average temperature distribution and its seasonal variation. (3) Interpretation of climate change as recorded in deep-sea sediment and ice cores using oxygen isotope and carbon dioxide data; relationship to interpretation of the Keeling Curve. (4) Accessing real-time online weather products, and providing an integrated interpretation; focus upon Interpreting and explaining successive Surface Analysis, 500 [mb], and 300 [mb] maps. (5) Computations and evaluation of the basic measures of humidity, including use of a psychrometer. (6) Computations using adiabatic lapse rates relative to the orographic effect in a stable atmosphere. (7) Computations comparing adiabatic lapse rates vs. environmental lapse rates to determine atmospheric stability vs. instability, response to forced-lifting, and heights of cloud base vs. top. 11. Texts a. Required Text (as assigned by instructor): (1) Ahrens, Donald C. Meteorology Today, 10th Ed. Belmont, CA: Thompson Brooks/Cole Publishing Co., 2013. (2) Aguado, Edward, James E. Burt. Understanding Weather and Climate, 6th Ed. Upper Saddle River, N.J.: Prentice Hall, Inc., 2012. b. Supplementary handouts and worksheets: Assigned by instructor. Addendum: Student Learning Outcomes Upon completion of this course, our students will be able to do the following: Memorize, apply, and explain the rationale behind classification systems developed for recognizing, explaining, and predicting relationships, patterns, and trends within the Atmospheric System (e.g., classification of atmospheric layering; classification of thermal vs. dynamic weather systems; classification of stable vs. unstable vs. conditionally unstable tropospheric conditions; classification of cloud types as an indicator of tropospheric stability; classification of diabatic vs. adiabatic work processes; classification of mesoscale vs. synoptic scale vs. continental scale vs. global scale atmospheric motions; classification of zonal vs. meridional Jet Stream patterns; etc.). GEOGRAPHY 140 METEOROLOGY: WEATHER AND CLIMATE page 4 Addendum: Student Learning Outcomes (continued) b. Describe, apply, and explain the evidence behind the foundational scientific models commonly used to explain and predict relationships, patterns, and trends within the Atmospheric System (e.g., Synoptic scale weather maps, including the analyzed version of surface isobar maps and upper-level height-contour maps; Kinetic Theory including the Equation of State and the Hydrostatic Equation, such as applied to systems powered by differential heating; Thermodynamics, including the unique role of water-vapor within the atmospheric system especially in terms of the energy transformations associated with phase changes; Dynamics, such as applied to the general circulation of the atmosphere, and to meridional Jet Stream patterns that produce zones of upper-level divergence vs. convergence; Wave Cyclone Theory resulting from Jet Stream dynamics and producing the traveling Cold Core Lows and associated frontal dynamics so common to winter across the United States (i.e., Midlatitude Cyclogenesis); etc.). c. Explain the step-by-step causes and outcomes of thermal circulation within the Atmospheric System, including across various spatial and temporal scales (e.g., Sea Breezes vs. Monsoonal Wind Systems vs. Hadley Cells; production of Warm Core Lows such as stationary Desert Thermal Lows vs. traveling Tropical Cyclones (e.g., Hurricanes); etc.). d. Discuss the unique characteristics and importance of water especially in the vapor phase within the Atmospheric System (e.g., high capacity to store heat energy per change in temperature; high latent heat associated with phase changes; radiative properties relative to infrared radiation and greenhouse warming; energy source behind convective weather systems; basic measures of humidity (e.g., specific humidity vs. saturation specific humidity vs. relative humidity); systematic distribution of the mechanisms by which precipitation is produced; effect on atmospheric instability; etc.) Date approved by the Governing Board: May 20, 2014   ,-=\]^klxyռwj`S`S`Fh*Jhn=CJOJQJh*Jh>CJOJQJhn=CJOJQJh/0J>*CJOJQJh/h/0J>*CJOJQJhn=0JCJOJQJh>0JCJOJQJh>0J>*CJOJQJhPZh>5>*CJOJQJh*JhPZ>*CJOJQJhz>*CJOJQJh>>*CJOJQJhQ>*CJOJQJh*J>*CJOJQJh>CJOJQJ+,-]^  + } & F 0d*$ 0 @ &zhd*$`hgdn= 0 &zhd*$`hgdn= 0 &zd*$gdn= & F 0 &zd*$gdn= d*$ $ d*$a$      * + 2 3 ? @ H _ i | } ~ H ˾˨˨˾ˌrerrXh*Jh)tCJOJQJh*Jh!9CJOJQJh*Jh:CJOJQJh*Jh3CJOJQJh*Jhp}CJOJQJh>>*CJOJQJh`Fh`FCJOJQJh>0JCJOJQJh>0J>*CJOJQJh>CJOJQJhzCJOJQJhn=CJOJQJh/CJOJQJh*Jh?',CJOJQJ+ , 2 3 ? @ G H ` a h i } ~   ) *  0hd*$^h & F 0d*$ 0hhd*$^h 0hd*$ gd`F 0hd*$gd`F 0hd*$`h 0d*$H j k      L X a q t     ! " , - : ; t u   ̿̿ٲ٥٘󘥲~h*Jh>CJOJQJh*Jh`CJOJQJh*Jhp}CJOJQJh*JhbCJOJQJh*JhdCJOJQJh*Jh!9CJOJQJh*Jh:CJOJQJh*JhV,CJOJQJh*Jh3CJOJQJh*Jh4qCJOJQJ0  ( ) * ^ x > ,37]ls8=DY]b{NööéöÜÜжжжööЂЂh*Jh)tCJOJQJh*Jh*CJOJQJh*JhX?CJOJQJh*JhCJOJQJh*JhECJOJQJh*JhACJOJQJh*Jh>CJOJQJh>0JCJOJQJh>0J>*CJOJQJh>CJOJQJ3* < Nz{| 0hd*$gd/Do &d*$gdX? 0d*$^`gd*J 0d*$^` 0d*$^gd & F 0d*$gd 0hd*$^hNz|56jnʽ殞tgZgM@h*Jh~CJOJQJh*Jh*CJOJQJh*JhsU:CJOJQJh*Jh)tCJOJQJh*JhCJOJQJh*Jh/DoCJOJQJh*Jhn)0J>*CJOJQJh*Jh/Do0J>*CJOJQJh*Jh/Do0JCJOJQJh*JhX?CJOJQJh*JhPZ>*CJOJQJh*JhX?>*CJOJQJh*Jh-CJOJQJh*Jh*JCJOJQJ62DE}l & F 0d*$gd*,F & F 0d*$gdkm & F 0d*$ 0d*$ 0hd*$gdJU 0d*$gdX? 0d*$^` 0d*$^`gd)t 0d*$^`gd  %*4NTz 'DỌuhh*Jh)tCJOJQJh*Jh>0JCJOJQJh*Jh>0J>*CJOJQJh*JhJU0JCJOJQJh*JhzCJOJQJh*JhsU:CJOJQJh*Jh>CJOJQJ^Jh*Jh*CJOJQJh*Jh~CJOJQJh*Jh>CJOJQJh*JhACJOJQJ%#12CJfgEHno̖̿xk\h*JhT40JCJOJQJh*JhbCJOJQJh*Jh>>*CJOJQJh*Jh>0J>*CJOJQJh*JhV0JCJOJQJh*JhCJOJQJh*Jh#CJOJQJh*Jh)tCJOJQJh*Jh>CJOJQJh*JhYTCJOJQJh*Jh*,FCJOJQJh*JhkmCJOJQJ#Eno!Gr, & F 0hd*$^gdM 0h8d*$^8`gdx & F 0hd*$^gd/q 0hd*$gdT4 0hhd*$^h 0d*$ 0hd*$gdV!"#$GHIJrstu,-./ ׳׳׳׳צh*Jh.jCJOJQJh*JhDKCJOJQJh*JhxCJOJQJh9 CJOJQJh*JhMCJOJQJh*Jh/qCJOJQJh*Jh>CJOJQJh*Jh>0JCJOJQJ7,J$Pj3j & F 0hd*$^gdM 0h8d*$^8`gd*J & F 0hd*$^gd{y & F 0hd*$^gd.j 0h8d*$^8`gdx #$%&'ijklm'234569PUijklm}ܨh*Jh/qCJOJQJh*JhMCJOJQJh*Jh~CJOJQJh*JhCJOJQJh*Jh vXCJOJQJh*Jhn)CJOJQJh*JhxCJOJQJh9 CJOJQJh*Jh.jCJOJQJh*Jh{yCJOJQJ2 1WXY{*LVv7=󲨛qdh*Jh*JCJOJQJh*Jh*J>*CJOJQJh*Jh/qCJOJQJ^Jh*Jh*CJOJQJh*Jh{yCJOJQJh*JCJOJQJh*JhMCJOJQJh*Jh4CJOJQJh*JhCJOJQJh*JhCJOJQJh*Jh/qCJOJQJh*JhDKCJOJQJ#X t 0hd*$gdFp & F 0hd*$ 0d*$ 0hd*$gd 0hd*$gd*J h&0d*$^`0gd*J 0hd*$^gd & F 0hd*$^gdM  !i"w"x"}""""""""Q#T#W#k#~###########ŸŸ󏂜sŸfh*JhFaCJOJQJh*Jh|0JCJOJQJh*JhaT&CJOJQJh*JhYCJOJQJh*JhFV3CJOJQJh*JhFp0JCJOJQJh*Jh>CJOJQJh*Jh>0JCJOJQJh*Jh>0J>*CJOJQJh*Jh0JCJOJQJh*Jh CJOJQJ# !x"#####$($$$n 0h0d*$^`0gdX` 8d*$^8`gdFa 0h88d*$^8`gdFa 0hd*$^hgdFa 0hd*$gdFa 0d*$ & F 0hd*$gd/Do 0hhd*$^h ####$$$$$$'$($)$*$+$9$?$L$S$h$$$$$$$$$$%%(%N%O%P%Q%U%]%%%%%%%%%%%%%%ٿ浨樿̨̛̎̿́h*JhkbCJOJQJh*JhX`CJOJQJh*JhaT&CJOJQJh*Jh-tCJOJQJh9 CJOJQJh*Jh_CJOJQJh*JhmCJOJQJh*JhW-4CJOJQJh*JhFaCJOJQJh*JhzCJOJQJ2$N%%&t&&<''''''y 0hhd*$^hgdx 0d*$ 0hd*$gdx 0h8d*$^8`gd*J 08d*$^8gd=" 0h8d*$^8`gdFa 088d*$^8`gdX` %& &&&&&<&s&t&u&v&w&&&&&&&&'i'''''''''''µµµ浨paTh*Jh>CJOJQJh*Jh>0JCJOJQJh*Jh>0J>*CJOJQJh*JhFa0JCJOJQJh*Jh*J0JCJOJQJhFaCJOJQJh*JhACJOJQJh*Jh-tCJOJQJh*JhX`CJOJQJh*JhmCJOJQJh9 CJOJQJh*JhkbCJOJQJh*Jh_CJOJQJ''''''''''' (((((,(L(M(N(O(R(T(`(ĵĜtgYgLgL?gLh*JhsU:CJOJQJh*JhwyCJOJQJh*Jh89_CJH*OJQJh*Jh89_CJOJQJh*Jh>6CJOJQJh*Jh>CJOJQJh*JhgCJOJQJh9 CJOJQJh*Jh89_0JCJOJQJh*JhA0JCJOJQJh*Jh>0JCJOJQJh*Jhx0JCJOJQJh*JhAu0JCJOJQJh*Jhp40JCJOJQJ'N((())9):));,>,r` h&d*$gd*J & F h1$^gd hgdgdz hT|d*$^`|gd 0d*$^ 0hd*$^hgd}n 088d*$^8`gdg 088d*$^8`gdg `(a((((((((((())8)9);))));,鿰|nbSD8Dh}nCJOJQJ^Jh*.hzCJOJQJ^Jhis=hzCJOJQJ^JhzCJOJQJ^Jhh:hz>*䴳ϴ+z>*䴳ϴ䴳ϴ*>䴳ϴ*>0䴳ϴ*890䴳ϴ*󰨲ԕ0䴳ϴ*89䴳*ϴ*89䴳ϴ*䴳ϴ*䴳ϴ;,<,=,?,C,s,z,|,,,,,,!-//000111+4r444444̿ڙ~~ocTLHLhjjhjUh~Oh~OCJOJQJ^Jh~OCJOJQJ^Jh~OhzCJOJQJ^Jh}nCJOJQJ^Jh*.h*JCJOJQJ^Jhh:h*J>*CJOJQJh+h*J>*CJOJQJh*JCJOJQJh*Jh*JCJOJQJh*Jh*J>*CJOJQJh*J>*CJOJQJh*.hzCJOJQJ^Jh*JCJOJQJ^J>,?,@,A,B,C,{,|,,,/01K4L4{ h1$gd~O h1$^`gd*J h1$^`gd*J h1$^gd*J &d*$^`gd*J hT|d*$^`|gd*J &d*$gd*JL4M44444444444444d h1$gd~O444h~Oh~OCJOJQJ^JhjD..()()))))()00P1F8$:p*JBP/ =!8"8#$% DpGs2 0@P`p2( 0@P`p 0@P`p 0@P`p 0@P`p 0@P`p 0@P`p8XV~ 0@ 0@ 0@ 0@ 0@ 0@ 0@ 0@ 0@ 0@ 0@ 0@ 0@ 0@_HmH nH sH tH H`H Normal1$CJOJQJ_HmH sH tH 88  Heading 1  & F@&88  Heading 2  & F@&88  Heading 3  & F@&88  Heading 4  & F@&88  Heading 5  & F@&88  Heading 6  & F@&88  Heading 7  & F@&88  Heading 8  & F@&d @d  Heading 9' $ 0hhd*$@&^h>*CJOJQJDA`D Default Paragraph FontViV  Table Normal :V 44 la (k (No List 4+4  Endnote Text>* > Endnote ReferenceH*66  Footnote Text@& !@ Footnote ReferenceH*8/18 a1CJOJQJkHmH sH u0OA0 GC OUTLINE 10OQ0 GC OUTLINE 2.a. Right Par 1.q. Right Par 2.. Right Par 3.. Right Par 4.. Right Par 5.. Right Par 6.. Right Par 7.. Right Par 800 GC OUTLINE 300 GC OUTLINE 4,, Document 86/6 Document 4 56CJ,!, Document 6,1, Document 5H/AH Document 2CJOJQJkHmH sH u,Q, Document 7.a. BibliogrphyH/qH Document 3CJOJQJkHmH sH u`/` Document 1($$ 0*$1$CJOJQJ_HmH sH tH (( Doc InitF/F Tech InitCJOJQJkHmH sH u.. Technical 5.. Technical 6J/J Technical 2CJOJQJkHmH sH uJ/J Technical 3CJOJQJkHmH sH u.. Technical 4J/J Technical 1CJOJQJkHmH sH u.. Technical 7.!. Technical 8010 GC OUTLINE 50A0 GC OUTLINE 60Q0 GC OUTLINE 70a0 GC OUTLINE 8NN TOC 1)7 $ 0*$]^`0JJ TOC 2%8 $ 0*$]^`0JJ TOC 3%9 $ p0*$]^p`0JJ TOC 4%: $ @ 0*$]^@ `0JJ TOC 5%; $ 0*$]^`0BB TOC 6< $0*$^`0:: TOC 7=0*$^`0BB TOC 8> $0*$^`0BB TOC 9? $ 0*$^`0N N Index 1%@ $ `*$]^``N N Index 2%A $ 0*$]^`0>.>  TOA Heading B*$ $*"* CaptionC:/A: _Equation CaptionHRH Fp} Balloon TextECJOJQJ^JaJR/aR Ep}Balloon Text CharCJOJQJ^JaJtH PK![Content_Types].xmlN0EH-J@%ǎǢ|ș$زULTB l,3;rØJB+$G]7O٭Vc:E3v@P~Ds |w< ,p H  N #%'`(;,44 "$%')*,.01347+ * E, $'>,L44!#&(+-/2568@0(  B S  ?GHI , ,=*urn:schemas-microsoft-com:office:smarttags PlaceType=*urn:schemas-microsoft-com:office:smarttags PlaceName9*urn:schemas-microsoft-com:office:smarttagsplace  p{frR X f#n#((,,,,,,,,,,,PX 7 E  XgGBM !:$y$z$$'(()J,,,3333333333333333333333333llyy()NOtuN O ,,,,,,,,,,,,,,llyy()NOtuN O ,,,,,,,,,,,,,, xaR: `~Q#: `7I 3!d,Vr u" @|'uZy@.@.@()@()@)@)h ^`hH.h ^`hH.h pL^p`LhH.h @ ^@ `hH.h ^`hH.h L^`LhH.h ^`hH.h ^`hH.h PL^P`LhH.h 8^8`hH.h ^`hH.h  L^ `LhH.h  ^ `hH.h x^x`hH.h HL^H`LhH.h ^`hH.h ^`hH.h L^`LhH.hh^h`.^`.88^8`)^`()^`()pp^p`()  ^ `.@ @ ^@ `.  ^ `. hh^h`56o(.^`o(.8^8`o()^`o(()^`o(()pp^p`o(()  ^ `o(.@ @ ^@ `o(.  ^ `o(.hh^h`.^`.88^8`)^`()^`()pp^p`()  ^ `.@ @ ^@ `.  ^ `.hh^h`. hh^h`56o(.^`o(.8^8`o()^`o(()^`o(()pp^p`o(()  ^ `o(.@ @ ^@ `o(.  ^ `o(.@h8^8`56>*CJOJQJo(. @_@_ |'uZyr u7I#3!d~aR                   dc/~Nn=f9 d-y="aT&]T+?',FV3W-4T4sU:rX<I*@ VA*,F`FJU2xV vXPZX[89_Fakbj.jnlmSxn/Do/q4qYar-t)tAuxwy{yp}~.4 ;AY}nX?v~O~AVX`4qa+z>,*JKJr*;>3p4`U!#E|_QkmRbFpDKn)YT0V,D\:%N9XMg!9,,@,@UnknownG.[x Times New Roman5Symbol3. .Cx Arial71 Courier5..[`)TahomaA$BCambria Math"9)d*(GCzGh$g%P%P)P4k,k, 2Q)PHP ?D\2!xxJ&\ Course Outline Shell [blank]GCCCDBarbara Prilaman8         Oh+'0 $ D P \ ht| Course Outline Shell [blank]GCCCD Normal.dotmBarbara Prilaman5Microsoft Office Word@@0_@V˰@{(~% ՜.+,0 hp  GCCCDPk, Course Outline Shell [blank] Title  !"#$%&'()*+,-./012345678:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[]^_`abcefghijknRoot Entry Fץ(~p1Table9=DWordDocumentFqSummaryInformation(\DocumentSummaryInformation8dCompObjr  F Microsoft Word 97-2003 Document MSWordDocWord.Document.89q