ࡱ> RTQ bjbjWW B555o v v 84PL!EfwwwDDDDDDDF9IDwwwwwDDwwwwjDwwDww?0BMd @$DD0!E@I~IHBBILCdwwwwwwwwDDrwww!EwwwwIwwwwwwwwwv :  GROSSMONT COLLEGE Official Course Outline MATHEMATICS 280 ANALYTIC GEOMETRY AND CALCULUS II 1. Course Number Course Title Semester Units Semester Hours MATH 280 Analytic Geometry 4 4 hours lecture and Calculus II 64-72 total hours 2. Course Prerequisites A C grade or higher or Pass in Math 180 or equivalent. Corequisite None. Recommended Preparation None. 3. Catalog Description A second course in differential and integral calculus of a single variable: integration, techniques of integration, infinite sequences and series, polar and parametric equation, conics. Primarily for science, technology, engineering & math majors. 4. Course Objectives The student will: Evaluate definite and indefinite integrals using a variety of integration formulas and techniques. Evaluate improper integrals. Apply convergence tests to sequences and series. Represent functions as power series. Graph, differentiate and integrate functions in polar and parametric form. Analyze and graph general conic sections 5. Instructional Facilities Standard classroom equipped with: Whiteboards Overhead projector/document camera SmartCart 6. Special Materials Required of Student Graphing calculator. 7. Course Content Additional techniques of integration including integration by parts and trigonometric substitution. Numerical integration; trapezoidal and Simpson's rule. Improper integrals. Introduction to sequences and series. Multiple tests for convergence of sequences and series. Power series, radius of convergence, interval of convergence. MATHEMATICS 280 ANALYTIC GEOMETRY AND CALCULUS II page 2 7. Course Content (continued) Differentiation and integration of power series. Taylor series expansion of functions. Parametric equations and calculus with parametric curves. Polar curves and calculus in polar coordinates. Conic sections. 8. Method of Instruction The development of problem-solving techniques may be achieved by using a variety of instructional techniques including: Instructor presented lecture and examples Individual and group work Daily problem assignments. 9. Methods of Evaluating Student Performance Homework. Independent exploration activities. Class participation/problem presentations. Quizzes. Chapter exams. In-class final exam (comprehensive). 10. Outside Class Assignments Homework, Take-home tests Problem sets. 11. Texts a. Required Text(s): Stewart, James. Single Variable Calculus Early Transcendentals; 7th edition, Belmont, CA: Brooks/Cole Publishing Company, 2012. b. Supplementary texts and workbooks: None. Addendum: Student Learning Outcomes Upon completion of this course, our students will be able to do the following: Choose and apply appropriate techniques of integration. Determine the convergence or divergence of sequences and series. Solve problems involving power series representations of functions. Analyze and graph polar equations, parametric equations, and conic sections. Solve problems using polar and parametric equations that involve tangent lines, arc length, and surface area. Date approved by the Governing Board: December 11, 2012   -./_bchuv  ) ɻ׭󒅒xk^Qhhu8OJQJ^JhhyOJQJ^Jhh}sOJQJ^Jhh@`OJQJ^JhhZ POJQJ^JhhgOJQJ^Jhh@`>*OJQJ^Jhhg>*OJQJ^Jhhy>*OJQJ^Jhh}o|>*OJQJ^Jhh6>*OJQJ^Jhh>*OJQJ^Jhh6OJQJ^J-./cd  d*$@&gd^  `$d*$gd^  `x$d*$gd^  `x$d*$gd^ 'd*$@&gd^ d*$gd^ d*$@&gd^   O P \ ] c d } ~  Dd*$^`Dgd~ d*$^gd?` Dd*$@&^`Dgd^ d*$@&gd^ d*$^gd^ d*$gd^) 3 ; O P [ c e |  0 1 O P W h i q r } ~ %    + - ٰٰ̾󦙦󏂏ٰuhٰhhkJOJQJ^Jhh~OJQJ^Jhh_mCOJQJ^JhdOJQJ^JhhSOJQJ^JhaOJQJ^Jhh6>*OJQJ^Jhh^>*OJQJ^Jhh^OJQJ^Jhh6OJQJ^Jhhu8OJQJ^Jhh?`OJQJ^J& ' D u   , - P \   & F 6d*$`6gda *T*d*$@&^*`gd^ *T*d*$^*`gd^ & F gdkJ & F d*$gd~ Dd*$^`Dgd~- O P  5 A B y z .034gyشwi\ihhrOJQJ^Jhhr>*OJQJ^Jh>*OJQJ^Jhh=H>*OJQJ^JhhN{OJQJ^JhFOJQJ^JhhBeOJQJ^Jhh8OJQJ^JhhaxOJQJ^JhKOJQJ^Jhh6>*OJQJ^Jhh6OJQJ^JhhnOJQJ^J! D |  & F *&*$^&gd?m$ & F **$gd? *T*d*$^*`gd^ *T*d*$@&^*`gd^ *T*d*$^*`gdn 01234tuv)Yi & F **$gd=H & F **$gd=Hm$ & F *dd*$1$[$\$gd=Hm$ **$gdr & F *&dd*$1$[$\$^&gd?m$)WX_`ghijm&(;@B[a"(ACϵvi\ihha9OJQJ^JhhYHBOJQJ^JhhOJQJ^JhpOJQJ^JhhnOJQJ^Jhh6>*OJQJ^Jhh6OJQJ^Jhh}o|OJQJ^JhhN{OJQJ^JhhBeOJQJ^JhhrOJQJ^JhOJQJ^Jhh=HOJQJ^J!ij'A\]yyyy & F *6d*$`6gdU & F *Td*$@&gdp *TBd*$@&^`Bgdn *T*d*$^*` *T*d*$@&^*`gd^"$BCN_noyyZZ & F *Td*$^`gdR & F *T0d*$`0gdR *T*d*$^*` *T*d*$@&^*`gd^ *TDd*$^`Dgdn| & F *6d*$`6gdU CNOX^`fsxFGk24ٴuuhZhMhh^OJQJ^Jhh">*OJQJ^Jhh"OJQJ^Jhh[AOJQJ^JhhYHBOJQJ^Jh@OJQJ^Jhh H*OJQJ^Jhh OJQJ^Jhhj0OJQJ^Jhh6>*OJQJ^JhGOJQJ^Jhh6OJQJ^Jhha9OJQJ^Jhhn|OJQJ^Jyz=EFkl4x & F **1$^*gd" **^*`gd"gd" T|d*$^`|gd" *T*d*$^*`gdj0 *T*d*$^*` 3456oqrtuvwyz|}~d *T*d*$@&^*`gd- *Td*$gd" & F **1$^*gdax46]noprsuvwxz{~ hldCJjhldUhldjhldCJUhhu8OJQJ^Jh OJQJ^Jhh6OJQJ^JhhW[OJQJ^J@....()()))()00P8$:pgBP/ =!8"8#$%88 Dp^% H02 0@P`p2( 0@P`p 0@P`p 0@P`p 0@P`p 0@P`p 0@P`p8XV~_HmH nH sH tH D`D Normal1$OJQJ_HmH sH tH DA D Default Paragraph FontViV  Table Normal :V 44 la (k (No List 8+@8  Endnote TextCJ>*`> Endnote ReferenceH*:@:  Footnote TextCJ@&`!@ Footnote ReferenceH*NN TOC 1) $ 0*$]^`0JJ TOC 2% $ 0*$]^`0JJ TOC 3% $ p0*$]^p`0JJ TOC 4% $ @ 0*$]^@ `0JJ TOC 5% $ 0*$]^`0BB TOC 6 $0*$^`0:: TOC 70*$^`0BB TOC 8 $0*$^`0BB TOC 9 $ 0*$^`0N N Index 1% $ `*$]^``N N Index 2% $ 0*$]^`0>.>  TOA Heading *$ $."@. CaptionCJ:/: _Equation CaptionRY@R ^ Document Map!-D M OJQJ^JH@"H Z P Balloon Text"CJOJQJ^JaJV^@2V ?`0 Normal (Web)#dd1$[$\$CJOJQJaJ.X`A. n@Emphasis6]PK![Content_Types].xmlN0EH-J@%ǎǢ|ș$زULTB l,3;rØJB+$G]7O٭V$ !)O^rC$y@/yH*񄴽)޵߻UDb`}"qۋJחX^)I`nEp)liV[]1M<OP6r=zgbIguSebORD۫qu gZo~ٺlAplxpT0+[}`jzAV2Fi@qv֬5\|ʜ̭NleXdsjcs7f W+Ն7`g ȘJj|h(KD- dXiJ؇(x$( :;˹! I_TS 1?E??ZBΪmU/?~xY'y5g&΋/ɋ>GMGeD3Vq%'#q$8K)fw9:ĵ x}rxwr:\TZaG*y8IjbRc|XŻǿI u3KGnD1NIBs RuK>V.EL+M2#'fi ~V vl{u8zH *:(W☕ ~JTe\O*tHGHY}KNP*ݾ˦TѼ9/#A7qZ$*c?qUnwN%Oi4 =3N)cbJ uV4(Tn 7_?m-ٛ{UBwznʜ"Z xJZp; {/<P;,)''KQk5qpN8KGbe Sd̛\17 pa>SR! 3K4'+rzQ TTIIvt]Kc⫲K#v5+|D~O@%\w_nN[L9KqgVhn R!y+Un;*&/HrT >>\ t=.Tġ S; Z~!P9giCڧ!# B,;X=ۻ,I2UWV9$lk=Aj;{AP79|s*Y;̠[MCۿhf]o{oY=1kyVV5E8Vk+֜\80X4D)!!?*|fv u"xA@T_q64)kڬuV7 t '%;i9s9x,ڎ-45xd8?ǘd/Y|t &LILJ`& -Gt/PK! ѐ'theme/theme/_rels/themeManager.xml.relsM 0wooӺ&݈Э5 6?$Q ,.aic21h:qm@RN;d`o7gK(M&$R(.1r'JЊT8V"AȻHu}|$b{P8g/]QAsم(#L[PK-![Content_Types].xmlPK-!֧6 0_rels/.relsPK-!kytheme/theme/themeManager.xmlPK-!0C)theme/theme/theme1.xmlPK-! ѐ' theme/theme/_rels/themeManager.xml.relsPK]  4 ) - C4  iy 8@0(  B S  ? o q r t u v w y z | ]bZy( / ? D o q r t u v w y z | 3333333./01OPhiqr}~550)ii&(;BN O f f 6 6 ] n o o q r r t u v w x y z { | ./01OPhiqr}~550)ii&(;BN O f f 6 6 ] n o o q r r t u v w y z | `0 pY;ov@B(~{L!DX#&\KwH;4ؐA &Dl6R:hhWΕscn[ h4*tsn5ttowkBxV>^`.^`.pp^p`.@ @ ^@ `.^`.^`.^`.^`.PP^P`.h*^*`OJQJ^Jo(hH.h b^b`hH.h 2 L^2 `LhH.h  ^ `hH.h ^`hH.h L^`LhH.h r^r`hH.h B^B`hH.h L^`LhH.h ^`hH.h \^\`hH.h , L^, `LhH.h  ^ `hH.h ^`hH.h L^`LhH.h l^l`hH.h <^<`hH.h  L^ `LhH.0^`0o(.^`.L^`L.  ^ `.[[^[`.+L+^+`L.^`.^`.L^`L.h^`OJPJQJ^J.h b^b`hH.h 2 L^2 `LhH.h  ^ `hH.h ^`hH.h L^`LhH.h r^r`hH.h B^B`hH.h L^`LhH.h  ^ `hH.h  ^ `hH.h L^`LhH.h V^V`hH.h &^&`hH.h L^`LhH.h ^`hH.h ^`hH.h f!L^f!`LhH.*^*`o(. ^`hH. L^`LhH.  ^ `hH. j^j`hH. :L^:`LhH.  ^ `hH. ^`hH. L^`LhH.*^*`o(. ^`hH. L^`LhH.  ^ `hH. j^j`hH. :L^:`LhH.  ^ `hH. ^`hH. L^`LhH.h ^`hH.h ^`hH.h pL^p`LhH.h @ ^@ `hH.h ^`hH.h L^`LhH.h ^`hH.h ^`hH.h PL^P`LhH.h*^*`OJQJ^Jo(hH.h b^b`hH.h 2 L^2 `LhH.h  ^ `hH.h ^`hH.h L^`LhH.h r^r`hH.h B^B`hH.h L^`LhH.^`.^`.pp^p`.@ @ ^@ `.^`.^`.^`.^`.PP^P`.h ^`hH.h \^\`hH.h , L^, `LhH.h  ^ `hH.h ^`hH.h L^`LhH.h l^l`hH.h <^<`hH.h  L^ `LhH.^`.^`.pp^p`.@ @ ^@ `.^`.^`.^`.^`.PP^P`.h ^`hH.h \^\`hH.h , L^, `LhH.h  ^ `hH.h ^`hH.h L^`LhH.h l^l`hH.h <^<`hH.h  L^ `LhH.h ^`hH.h \^\`hH.h , L^, `LhH.h  ^ `hH.h ^`hH.h L^`LhH.h l^l`hH.h <^<`hH.h  L^ `LhH.wH;sn@B6Rc[ h`0 {L!toX#&kBxY;AhW. DzYT                 ؎[        ~D                 2        N}<                 zYT                                    p7 xy '?xy xy Q#@se&xy d)xy Vxy _d Q#@s_d^^uxy SRQ5 z pS@`"&j02,2U56+6.78u8a9p@YHB_mCFIF=HI7IkJWNZ P2Z?`Begz_hC#ipraxN{7-|6|}o|~naGrk}sKa _b{vld`%^R@n|^q/.D[AdB_W[?UJS>xy -o q @ p@UnknownG*Ax Times New Roman5Symbol3. *Cx Arial71 Courier5. .[`)TahomaA$BCambria Math"9A)C$ GxJ!   !)P24i i 3Q)PHX?.72!xx !A Course Outline Template [blank]GCCCDGCCCDH          Oh+'0 $0 P \ h t$A Course Outline Template [blank]GCCCD Normal.dotmGCCCD12Microsoft Office Word@^в@|@E@d  ՜.+,0 px  GCCCDAi  "A Course Outline Template [blank] Title  !"#$%&'()*+,-./0123456789:;<=>?@BCDEFGHJKLMNOPSRoot Entry F_Sd U1TableJWordDocumentB5SummaryInformation(ADocumentSummaryInformation8ICompObjr  F Microsoft Word 97-2003 Document MSWordDocWord.Document.89q